A boundary integral algorithm for the Laplace Dirichlet–Neumann mixed eigenvalue problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

A boundary element method for the Dirichlet eigenvalue problem of the Laplace operator

The solution of eigenvalue problems for partial differential operators by using boundary integral equation methods usually involves some Newton potentials which may be resolved by using a multiple reciprocity approach. Here we propose an alternative approach which is in some sense equivalent to the above. Instead of a linear eigenvalue problem for the partial differential operator we consider a...

متن کامل

On the Boundary Integral Equation Method for a Mixed Boundary Value Problem of the Biharmonic Equation

This paper is concerned with weak solution of a mixed boundary value problem for the biharmonic equation in the plane. Using Green’s formula, the problem is converted into a system of Fredholm integral equations for the unknown data on different part of the boundary. Existence and uniqueness of the solutions of the system of boundary integral equations are established in appropriate Sobolev spa...

متن کامل

On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions

In this paper we consider a Robin-type Laplace operator on bounded domains. We study the dependence of its lowest eigenvalue on the boundary conditions and its asymptotic behaviour in shrinking and expanding domains. For convex domains we establish two-sided estimates on the lowest eigenvalues in terms of the inradius and of the boundary conditions. AMS Mathematics Subject Classification: 47F05...

متن کامل

A linear eigenvalue algorithm for the nonlinear eigenvalue problem

The Arnoldi method for standard eigenvalue problems possesses several attractive properties making it robust, reliable and efficient for many problems. Our first important result is a characterization of a general nonlinear eigenvalue problem (NEP) as a standard but infinite dimensional eigenvalue problem involving an integration operator denoted B. In this paper we present a new algorithm equi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2015

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2015.05.016